Controlling area blow-up in minimal or bounded mean curvature varieties

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow up of Subcritical Quantities at the First Singular Time of the Mean Curvature Flow

Consider a family of smooth immersions F (·, t) : M → R of closed hypersurfaces in R moving by the mean curvature flow ∂F (p,t) ∂t = −H(p, t) ·ν(p, t), for t ∈ [0, T ). We show that at the first singular time of the mean curvature flow, certain subcritical quantities concerning the second fundamental form, for example ∫ t 0 ∫ Ms |A| log(2+|A|)dμds, blow up. Our result is a log improvement of re...

متن کامل

Curvature Blow up in Bianchi Viii and Ix Vacuum Spacetimes

The maximal globally hyperbolic development of non-Taub-NUT Bianchi IX vacuum initial data and of non-NUT Bianchi VIII vacuum initial data is C2-inextendible. Furthermore, a curvature invariant is unbounded in the incomplete directions of inextendible causal geodesics.

متن کامل

Blow-up in the Parabolic Scalar Curvature Equation

The parabolic scalar curvature equation is a reaction-diffusion type equation on an (n − 1)-manifold Σ, the time variable of which shall be denoted by r. Given a function R on [r0, r1)×Σ and a family of metrics γ(r) on Σ, when the coefficients of this equation are appropriately defined in terms of γ and R, positive solutions give metrics of prescribed scalar curvature R on [r0, r1)× Σ in the fo...

متن کامل

Surfaces of Bounded Mean Curvature in Riemannian Manifolds

Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on mean curvature and area. We show that on passing to a subsequence and choosing appropriate parametrisations, the inclusion maps converge in C to a map from a surface of genus g to M . We also show that, on passing to a further subsequence, the distance functions correspond...

متن کامل

Computing Minimal Surfaces by Mean Curvature Flow with Area-oriented Tangential Redistribution

In this paper, we use a surface evolution model for construction of minimal surfaces with given boundary curves. The initial surface topologically equivalent to a desired minimal surface is evolved by the mean curvature flow. To improve the quality of the mesh, we propose an area-oriented tangential redistribution of the grid points. We derive the numerical scheme and present several numerical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2016

ISSN: 0022-040X

DOI: 10.4310/jdg/1456754017